Electrical Coupling and Synchronized Subthreshold Oscillations in the Inferior Olive of the Rhesus Macaque.

نویسندگان

  • Josef Turecek
  • Victor Z Han
  • Verginia C Cuzon Carlson
  • Kathleen A Grant
  • John P Welsh
چکیده

UNLABELLED Inferior olive (IO) neurons are critical for motor coordination and exhibit oscillations in membrane potential that are subthreshold for spiking. The prevalence, coherence, and continuity of those subthreshold oscillations (STOs) depend upon resonant interactions between neighboring neurons supported by electrical coupling. Many studies of the olivocerebellar system in rodents, in which STOs were related to tremor, whisking, and licking, fueled a debate over whether IO STOs were relevant for primates whose repertoire of movement is generally less periodic. The debate was never well informed due to the lack of a direct examination of the physiological properties of primate IO neurons. Here, we obtained dual patch-clamp recordings of neighboring IO neurons from young adult macaques in brainstem slices and compared them to identical recordings from rats. Macaque IO neurons exhibited an equivalent prevalence of continuous STOs as rats (45 vs 54%, respectively). However, macaque STOs were slower (1-4 Hz) and did not overlap with the dominant 4-9 Hz frequency of rats. The slower STO frequency of macaques was at least partially due to a prolonged membrane time constant and increased membrane capacitance that could be attributed to stronger electrical coupling and greater total dendritic length. The presence of synchronized STOs in the IO of adult macaques, coincident with strong and prevalent electrical coupling, answers a fundamental outstanding question in cerebellar neuroscience and is consistent with a prominent role for synchronized oscillation in primate sensory-motor control. SIGNIFICANCE STATEMENT It was debated whether inferior olive (IO) neurons of primates behave as synchronized oscillators as was found for rodents using intracellular, optical, and multielectrode recordings. An inability to resolve this issue using single-Purkinje cell extracellular recordings in monkeys limited our understanding of timing mechanisms in the primate brain. Using dual whole-cell recordings from the IO of young adult rhesus macaques in acutely prepared brainstem slices, our work demonstrates that pairs of primate IO neurons show synchronized oscillations in membrane potential. The findings have strong mechanistic and translational relevance, as IO activation has been implicated in humans' perceptual timing of sensory events and motricity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities.

The mechanism underlying subthreshold oscillations in inferior olivary cells is not known. To study this question, we developed a single-compartment, two-variable, Hodgkin-Huxley-like model for inferior olive neurons. The model consists of a leakage current and a low-threshold calcium current, whose kinetics were experimentally measured in slices. Depending on the maximal calcium and leak condu...

متن کامل

The Generation of Phase Differences and Frequency Changes in a Network Model of Inferior Olive Subthreshold Oscillations

It is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental observations remain an enigma. The fir...

متن کامل

Role of gap junctions in synchronized neuronal oscillations in the inferior olive.

Inferior olivary (IO) neurons are electrically coupled through gap junctions and generate synchronous subthreshold oscillations of their membrane potential at a frequency of 1-10 Hz. Whereas the ionic mechanisms of these oscillatory responses are well understood, their origin and ensemble properties remain controversial. Here, the role of gap junctions in generating and synchronizing IO oscilla...

متن کامل

Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns

The inferior olive (IO) is a neural network belonging to the olivo-cerebellar system whose neurons are coupled with electrical synapses and display subthreshold oscillations and spiking activity. The IO is frequently proposed as the generator of timing signals to the cerebellum. Electrophysiological and imaging recordings show that the IO network generates complex spatio-temporal patterns. The ...

متن کامل

Rhythmicity without synchrony in the electrically uncoupled inferior olive.

Neurons of the inferior olivary nucleus (IO) form the climbing fibers that excite Purkinje cells of the cerebellar cortex. IO neurons are electrically coupled through gap junctions, and they generate synchronous, subthreshold oscillations of membrane potential at approximately 5-10 Hz. Experimental and theoretical studies have suggested that both the rhythmicity and synchrony of IO neurons requ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 24  شماره 

صفحات  -

تاریخ انتشار 2016